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The secondary motions arising as the result of instability in a plane parallel flow 
of a viscous incompressible fluid in an unbounded space is considered. The ilow has a 
sinusoidal velocity profile at the value of Reynolds number slightly exceeding its crit - 

ical value over the whole interval 0 <o < om of the wave numbers (am is the wave 

number of a neutral perturbation of a plane-parallel flow ). 

The stability of the secondary motions relative to the perturbations which upset the . 
periodic character of the motion is investigated, The method of expansion ina,,app - 

lied previously in El] to investigate the stability of the wave motions in a film of a vis- 

cous fluid running down an inclined plane is used. It is shown that all secondary spat - 

ially periodic motions are unstable. The linear theory of stability of a plane parallel 

flow is formulated for a sinusoidal [Z] and arbitrary [3] periodic velocity profile. 
Bifurcation methods are used to prove the existence of secondary motions, Secondary 
self-oscillatory modes are constructed and their stability with respect to the pertur - 
bations of the same periodicity [4, 51 is investigated. The secondary motions and their 
stability were also investigated taking a finite number of the Fourier components into 
account [6,7], The higher harmonics for a given value of the Reynolds number can be 

neglected only in the case of motions the wave numbers. a ofwhich differlittle from%. 

1. Let a viscous incompressible fluid of density p and kinematic viscosity v 
move under the action of an external force parallel to the 2 -axis and varying in the 

direction of the I/ -axis in accordance with the law 

F = A sin (y / E) 
Choosing 2, v / I and pvs ! la as the unit length, velocity and pressure respectively, 

we can write the equations of motion in the dimensionless form as follows : 

g+(vv)v=- Vp+Av-+-Rsinyi,divv=O (1.1) 

where i is the unit vector in the direction of the z-axis and .& = Ap / pVv2 is the 
Reynolds number. The motion is assumed plane (P, = 0) . We shall use the notation 
u = r&c, 2, = VU. We also require that the mean flow of the fluid is zero (condition 

of closure ) 
L L 

fim -j& 1 0.2) 
L+w 

~(~,~)~~ = lim -+- 
s 

u(&y)&= 0 
-L =-+a, -_L 

and, that the functions v and vp are bounded. The system (1. 11 always has a sol - 
ution which satisfies the conditions (1.2) and the condition of boundedness 

v=V=(Rsin.y.,O), p=P=const (1.3) 

836 



Stability of secondary flows of a viscous fluid in unbounded space 831 

which corresponds to a plane parallel motion. The motion (1.3) becomes unstable with 
increasing R , under the long- wave perturbations [21. Expansion in terms of the wave 

number a yields the following expression for the perturbation decay increments 3~ : 

h = (1 - Ra / 2) aa + Ra (1 + R2 / 4) d + 0 (a@) (f-4) 
The above expression shows that when R > R, = fl , the perturbations with wave 

numbers lying in the interval 0 < u < CZ, increase. The relation connecting CL, 
and R is given by 

R = R, !I + 311t,,,~ / 2 + 0 (am4)I (1.5) 

From (1.4) and (1. 5) it follows that for small a, and 0 < a ( a,. 

A (4 = 0, (%a”) 
2. Let us now consider the motions which are not plane parallel. We shall assume 

o, to be small since R - R * is small, and use it as a small parameter. Taking 

due notice of the estimate given above for h, it is natural to introduce the variables 
X = u,x, and T = a,9 for the motions with wave numbers 0 < o < a,,,, 

o = 0 (%a) We shall therefore set 

v’=v--v ) p’=p-P 

and construct the solutions v’ and p’ in the form of a series in a,,,. 
It can be shown that for the steady secondary motions the expansions for the vel - 

ocity components U’ and V’ commence with the first power of U,[7] , and those for p’ 
with the second power ofdo,,, . Let is introduce the functions u v and p for which 

the expansions begin with the zero power of o, 
co 00 

u= x u,a,n, v = c (2.1) 
Unum*, P = 2 pdh” 

n=o n=o n=o 

(24’ = a,u, 8' = u,v, p’ = um2p) 

The relation connecting a,,, and R is given by 

R =gR2& 
n=o 

Equations (1. 1) in the above notation become 

&J &I 

ay= -amax 

a%l 
-= Rcosyv+ it, 

(2.2) 

(2.3) 

+ 

where the last equation is derived from an equation for the y-component of the velocity 
with the equation of continuity taken into account. 

Let us substitute the expansions (2. 1) and (2. 2) into (2.3) and equate the terms of 
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like power in a,. The zero order equations yield 

and from these we obtain 

vo = ~0 (X, T), uo = -R, cos yv, + ~~(1) (X, 2’) 

p. = 2Rocosyz avo + p?’ (X,.T) 

The conditions of solvability of the equations of higher orders yield the functions u,(l) 
and pofl) , and a closed nonlinear equation for the function V, (X, 2’). 

From the first order equations we obtain 

v1 = RosinyFi + $’ (X7 12”) 

ui = - Rs sin yu02 - R, cos yu?’ + ul” (X, T) 

PI = Rosin Y&(v~~) + $sin2y$$!+ 

2Ro cos y 
a+) 
ax + p:"(XJ) 

Moreover, from the conditions of solvability of the equations for u1 and p1 with (1. 2) 
taken into account and from the condition of boundedness follows 

u,(i) = 0, R, = %?? 

For the sake of brevity, we shall denote by repeated dots the terms related to the sol - 
utions of homogeneous equations v,rl) (X, T),u,(Q (X, T)and pn@) (X, T), IL > I, 
as these functions do not appear in the final equation. In the second order we have 

v2 = -Rocosy~(vo2)+.. . 

l&2 = -R~cos~~o-Ro~os~ +... 

(the expression for p2 is not used) . The condition of solvability of the equation for 

Us yields p&l) = uo2 + c 

where c is an arbitrary constant. Finally, in the third order the condition of solv - 
ability of the equation for ps we obtain the closed nonlinear equation for the function V. 

(2.4) 

The equation which can be obtained by linearizing (2.4) must, by virtue of a, 
being defined as the wave number of a neutral perturbation, have a time-independent 

solution !v, = exp (ix) . This implies that R, = 3/% 1/z which agrees with (1. 5). 
Transforming the scale we can reduce (2.4) to the form 

av 
-3T+ g+g&&(v3)=0 (2.5) 

(u, = 3/a J.c.v, t = 3T) 
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We note that (2.5) can also be derived using the stream function equation instead of 
the system (2.3), but in this case the final equation will be ofhigherorder in Urn* 

3. Let us coIlsi& steady, secondary periodic motions described by the equation 

dVdP (dWdP + V - Vs) = 0 (3.1) 

v (X + 2x I a,) = V (X), 0 < aI < 1 

where % denotes the ratio of the wave number o of the secondary motion, to a, . 
Taking the requirement of the boundedness of V and the conditions (1.2) into ace - 
ount, we find that a suitable choice of the reference point in X yields a solution 
of the form 

v= I/&w& (3.2) 

where k is the modulus of the elliptic unction, The condition of periodicity gives 

the following relation connecting k and aI : 
Jc 

h= - 
2K (k) 1/i+ k’ 

(3.3) 

where K {k) is the complete elliptic integral, k +O as a, +l and k + 1 

as a, -_t 0, From (3.2) it follows that the higher order Fourier components in Xcan 
be neglected when or is nearly equal to unity. 

Let us now investigate the stability of the solution (3.2). For perturbations 

+V (X) exp (-AT) superimposed on the solution (3, 2) we have 

d2[W(l-3V2j] =. 
dX2 

The eigenvalues a can be found from the condition that Wremains bounded as 

X +& 00. Since V* is a n / or -periodic function, a restricted solution of 

(3.4) dan be written in the form 

W (X) = U tX) exp (ifiX) (3.5) 

Here U (X) is a n / a, -periodic function and fi is a real number defined with the 
accuracy to within an integer multiple of 2a,, so that we can assume that - aI 

< p < a,. The function U (X) satisfies the equation and condition of periodicity 

- ?JJ + (A + q)” u + (-& + ia)” [(i - 3P) U] = 0 (3.6) 

u (X + rc I a,) = u (X) 

Let us consider the perturbations with small fl. We shall seek a solution of (3. 6) 

and the quantity h in the form of a series in p, 

In the zeroth order we have 

-A,U, + uorv + [(I - 3VZ)Uol” = 0 
uo (X + n / CZJ = u, (X) 

(3.7) 
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where a prime denotes differentiation with respect to X. Equation (3. 7) has a sol - 
ution for & = 0, of the form 

u ,, = kla + 2kacna -& , k’s = 1 - k= (3.8) 

Consider the following orders in p for a perturbation with h, = 0. In the first 
order in fl we have 

UIIV + [(I - 31/2)U,]” = A,lJ, - 4iUo” - 2i I(1 - 3V2)U01’ 

u, (X + n / a,) = Ul (X) 

The left-hand side of the equation contains a complete derivative of the periodic 

function. Obviously the condition of solvability has the form 

A, (U,> = 0 

Since (U,) # 0, we have A, = I). In the second order in p we have 

Va’v + [(I - 3V2)U,l” = A,U, - 4iU1”’ - 2i [(l -3F/‘2)U11’ 
+ 6Uo” + (1 - 3b’2)Uo, U,, (X + x / al) = U,, (X) 

The condition of solvability yields 

h, = - ((1 - 3V2)Uo) 1 (Ud 

Substituting (3.2) and (3.8) in the above expression, we obtain 

3L) = -k’4 / (2E (k) / K (k) - k’2)(1 + k2), k’2 = 1 - ka 

where K (k) and E (FE) are complete elliptic integrals of the first and second kind. 

It can be shown that A, is negative in the whole region Cl ( k ( 1, so that all 

periodic secondary motions exhibit a mode of perturbation the de’cay decrement of 

which is negative for small but finite values of fi. 
Thus we see that8 although the secondary spatially periodic motions are stable with 

respect to the perturbations the period of which coincides with the period of the motion 

under consideration [5] , they are unstable with respect to the perturbations of more 

general type. In contrast with the secondary motions in a layer with rigid boundaries 
[8] and a motion with a free surface [l] for which an interval of stability with respect 
to plane perturbations exists, the secondary spatially periodic motions arising as the 
result of instability in a plane parallel flow with a sinusoidal velocity profile in an un- 
bounded region, are unstable irrespective of the values of their periods. 

The author thanks E. M. Zhukovitskii for the interest shown and for discussion. 
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The problem of convective diffusion to a reacting rigidsphere was solved earlier 
in [l] for smallvalues of P&let and Reynolds numbers and finite reaction 
,velocities, using the method of matched asymptotic expansions, In the pre- 

sent paper the problem of diffusion to a rigid sphere in a Stokes flow at finite 
velocities of the first order chemical reaction at the sphere surface is solved 
for large values of the P&let number. The method of solution is similar to 

that used in [2] in the problem of convective diffusion to a reacting flat plate 

in a longitudinal flow of a viscous fluid. 
We consider a convective diffusion of material to a rigid sphere in a Stokes flow 

of a viscous incompressible fluid the speed of which, away from the sphere is U . We 
assume that the P&let numbers P = au / D (where a is the radius of the sphere 

and D is the diffusion coefficient of the material in the flow ) are large. A first 

order chemical reaction with the velocity constant h takes place at the surface of 

the sphere. The process of convective diffusion at large.P&let numbers is described 
by the boundary layer diffusion equation which in the spherical . (r, 6) -coordinate 
system with the origin at the center of the sphere and the polar axis pointing in the 

direction opposite to the direction of flow at infinity, has the form 

yac + v, ac 
r ar r afj=DZ --- (1) 

Here v,. and vs are the radial and angular velocity components in the spherical 


